Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37565276

RESUMO

Significance: The stria vascularis, located in the inner ear, consists of three layers, one of which is the blood-labyrinth barrier (BLB). It is formed by endothelial cells, sealed together to prevent the passage of toxic substances from the blood to the inner ear, by pericytes and perivascular-resident macrophage-like melanocyte. Recent Advances: There are various causes that lead to hearing loss, and among these are noise-induced and autoimmune hearing loss, ear disorders related to ototoxic medication, Ménière's disease, and age-related hearing loss. For all of these, major therapeutic interventions include drug-loaded nanoparticles, via intratympanic or intracochlear delivery. Critical Issues: Since many pathologies associated with hearing loss are characterized by a weakening of the BLB, in this review, the molecular mechanisms underlying the response to damage of BLB cellular components have been discussed. In addition, insight into the role of hormetic nutrients against hearing loss pathology is proposed. Future Directions: BLB cellular components of neurovascular cochlear unit play important physiological roles, owing to their impermeable function against all ototoxic substances that can induce damage. Studies are needed to investigate the cross talk occurring between these cellular components to exploit their possible role as novel targets for therapeutic interventions that may unravel future path based on the use of hormetic nutrients.

2.
Mol Biol Rep ; 50(2): 1241-1252, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36446982

RESUMO

BACKGROUND: Several results demonstrated that microglia and peripheral monocytes/macrophages infiltrating the central nervous system (CNS) are involved in cell response against toxic compounds. It has been shown that rotenone induces neurodegeneration in various in vitro experimental models. Baicalin, a natural compound, is able to attenuate cell damage through anti-oxidant, anti-microbial, anti-inflammatory, and immunomodulatory action. Using THP-1 monocytes, we investigated rotenone effects on mitochondrial dysfunction and apoptosis, as well as baicalin ability to counteract rotenone toxicity. METHODS AND RESULTS: THP-1 cells were exposed to rotenone (250 nM), in the presence/absence of baicalin (10-500 µM) for 2-24 h. Reactive Oxygen Species production (ROS), mitochondrial activity and transmembrane potential (Δψm), DNA damage, and caspase-3 activity were assessed. Moreover, gene expression of mitochondrial transcription factor a (mtTFA), interleukin-1ß (IL-1ß), B-cell lymphoma 2 (Bcl2) and BCL2-associated X protein (Bax), together with apoptotic morphological changes, were evaluated. After 2 h of rotenone incubation, increased ROS production and altered Δψm were observed, hours later resulting in DNA oxidative damage and apoptosis. Baicalin treatment at 50 µM counteracted rotenone toxicity by modulating the expression levels of some proteins involved in mitochondrial biogenesis and apoptosis. Interestingly, at higher baicalin concentrations, rotenone-induced alterations persisted. CONCLUSIONS: These results give evidence that exposure to rotenone may promote the activation of THP-1 monocytes contributing to enhanced neurodegeneration. In this context, baicalin at low concentration exerts beneficial effects on mitochondrial function, and thus may prevent the onset of neurotoxic processes.


Assuntos
Estresse Oxidativo , Rotenona , Humanos , Rotenona/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Células THP-1 , Apoptose , Anti-Inflamatórios/farmacologia
3.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555432

RESUMO

The stria vascularis (SV) contributes to cochlear homeostasis and consists of three layers, one of which contains the blood-labyrinthic barrier (BLB), with a large number of bovine cochlear pericytes (BCPs). Cisplatin is a chemotherapeutic drug that can damage the SV and cause hearing loss. In this study, cell viability, proliferation rate, cytotoxicity and reactive oxygen species production were evaluated. The protein content of phospho-extracellular signal-regulated kinases (ERK) 1/2, total ERK 1/2, phospho-cytosolic phospholipase A2 (cPLA2), total cPLA2 and cyclooxygenase 2 (COX-2) and the release of prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF) from BCPs were analyzed. Finally, the protective effect of platelet-derived growth factor (PDGF-BB) on BCPs treated with cisplatin was investigated. Cisplatin reduced viability and proliferation, activated ERK 1/2, cPLA2 and COX-2 expression and increased PGE2 and VEGF release; these effects were reversed by Dexamethasone. The presence of PDGF-BB during the treatment with cisplatin significantly increased the proliferation rate. No studies on cell regeneration in ear tissue evaluated the effect of the PDGF/Dex combination. The aim of this study was to investigate the effects of cisplatin on cochlear pericytes and propose new otoprotective agents aimed at preventing the reduction of their vitality and thus maintaining the BLB structure.


Assuntos
Pericitos , Estria Vascular , Animais , Bovinos , Estria Vascular/metabolismo , Cisplatino/toxicidade , Cisplatino/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Becaplermina/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo
4.
Mech Ageing Dev ; 203: 111637, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35122769

RESUMO

Most chronic illnesses are caused by the biological reaction to an injury, rather than the initial injury or the injurious agent itselves as in neurodegeneration. With respect to this, notable attention is emerging on the therapeutic effects of dietary polyphenols for human health, able to counteract and neutralize oxidative stress and inflammatory processes involved in the etiopathogenesis of major neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. The acquired concept that cellular stress at low doses induces neuroprotective responses against degenerative processes is a frontier area of the neurobiological research focusing on the development of novel preventive and therapeutic interventions for neurodegenerative disorders. Notably, basal levels of prooxidant species are essential to promote adaptive redox cellular responses including vitagenes, tightly correlated to cell survival against age-related diseases. In this paper we discuss the concept of cellular stress response and hormesis and its applications to the field of neuroprotection and the potential therapeutic support provided by olive polyphenols, in particular hydroxytyrosol (HT)-rich aqueous olive pulp extract (Hidrox), as a pivotal activator of Nrf2 pathway and related vitagenes, and inhibitor of Keap1-Nrf2 interaction.Olive polyphenols are considered potential pharmacological modulators of neuroinflammation by upregulation of the Keap1/Nfr2/ARE pathway thus providing a strong rationale for treating neurodegenerative disorders.


Assuntos
Produtos Biológicos , Doenças Neurodegenerativas , Olea , Polifenóis , Produtos Biológicos/uso terapêutico , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Olea/metabolismo , Estresse Oxidativo , Polifenóis/farmacologia , Polifenóis/uso terapêutico
5.
Antioxidants (Basel) ; 11(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35204289

RESUMO

Inflammatory bowel diseases (IBDs) are disorders characterized by chronic inflammation of the intestinal tract. The focus of the present study was to examine the effect of the fungus Coriolus versicolor (CV), underlining its correlation with Toll-like receptors 4 (TLR4) and nuclear factor erythroid 2-related factor 2 (Nrf2); we aim to evaluate its anti-inflammatory and antioxidant effect in mice exposed to experimental colitis. The model was induced in mice by colon instillation of dinitrobenzenesulfonic acid (DNBS), CV was administered orally (200 mg per kg) daily for 4 days. On day 4, the animals were killed, and the tissues collected for histological, biochemical, and molecular analyses. Four days after DNBS administration, CC motif chemokine ligand 2 (CCL2), prostaglandin E2 (PGE2), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) production increased in association with damage to the colon. Neutrophil infiltration, as assessed by myeloperoxidase (MPO) activity, in the mucosa was associated with overexpression of P-selectin and intercellular adhesion molecule 1 (ICAM1). Immunohistochemistry for nitrotyrosine and poly-(ADP-Ribose)-polymerase (PARP) showed evident stain in the inflamed colon. Treatment with CV significantly reduced the appearance of colon changes and weight loss. These effects were associated with a remarkable ability of CV to reduce the expression of TLR4 and modulate the pathway of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB). This improved the colon architecture, reduced MPO activity, the release of proinflammatory cytokines, the presence of nitrotyrosine, and the hyperactivation of PARP, as well as the up-regulation of P-selectin and ICAM1. Furthermore, we studied the action of CV on the Nrf2/HO-1 pathway, which is important for maintaining redox balance, demonstrating that CV by significantly increasing both enzymes is able to counteract the oxidative stress induced by DNBS. Taken together, our results clearly show that this natural compound can be considered as a possible dietary supplement against colitis.

6.
Mech Ageing Dev ; 202: 111620, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033546

RESUMO

The paper provides a comprehensive and foundational mechanistic framework of hormesis that establishes its centrality in medicine and public health. This hormetic framework is applied to the assessment of olive polyphenols with respect to their capacity to slow the onset and reduce the magnitude of a wide range of age-related disorders and neurodegenerative diseases, including Alzheimer's Disease and Parkinson's Disease. It is proposed that olive polyphenol-induced anti-inflammatory protective effects are mediated in large part via the activation of AMPK and the upregulation of Nrf2 pathway. Consistently, herein we also review the importance of the modulation of Nrf2-related stress responsive vitagenes by olive polyphenols, which at low concentration according to the hormesis theory activates this neuroprotective cascade to preserve brain health and its potential use in the prevention and therapy against aging and age-related cognitive disorders in humans.


Assuntos
Doenças Neurodegenerativas , Olea , Envelhecimento/metabolismo , Hormese , Humanos , Doenças Neurodegenerativas/prevenção & controle , Polifenóis/farmacologia
7.
Antibiotics (Basel) ; 10(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34827311

RESUMO

Candida albicans (C. albicans) and Candida glabrata (C. glabrata) are part of the human microbiome. However, they possess numerous virulence factors, which confer them the ability to cause both local and systemic infections. Candidiasis can involve multiple organs, including the eye. In the present study, we investigated the anti-candidal activity and the re-epithelizing effect of Orobanche crenata leaf extract (OCLE). By the microdilution method, we demonstrated an inhibitory effect of OCLE on both C. albicans and C. glabrata growth. By crystal violet and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, we showed the ability of OCLE to inhibit the biofilm formation and the viability of yeast cells, respectively. By germ tube and adhesion assays, we proved the capacity of OCLE to affect the morphological transition of C. albicans and the adhesion of both pathogens to human retinal pigment epithelial cells (ARPE-19), respectively. Besides, by MTT and wound healing assay, we evaluated the cytotoxic and re-epithelizing effects of OCLE on ARPE-19. Finally, the Folin-Ciocalteu and the ultra-performance liquid chromatography-tandem mass spectrometry revealed a high content of phenols and the presence of several bioactive molecules in the extract. Our results highlighted new properties of O. crenata, useful in the control of Candida infections.

8.
Biomedicines ; 9(11)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34829912

RESUMO

Fibromyalgia (FM) is a chronic condition characterized by persistent widespread pain that negatively affects the quality of life of patients. The WNT/ß-catenin signaling pathway seems to be involved in central sensitization and different pain states. The objective of this study was to investigate the beneficial effects of a new compound called Hidrox® (HD), containing 40-50% hydroxytyrosol, in counteracting the pain associated with FM. An FM-like model was induced in rats by subcutaneous injections of reserpine (1 mg/kg) for three consecutive days. Later, HD (10 mg/kg) was administered orally to the animals for seven days. Reserpine injections induced WNT/ß-catenin pathway activation, release of pro-inflammatory mediators as well as a significant increase in oxidative stress. Daily treatment with HD was able to modulate the WNT/ß-catenin and Nrf2 pathways and consequently attenuate the behavioral deficits and microglia activation induced by reserpine injection. These results indicate that nutritional consumption of HD can be considered as a new therapeutic approach for human FM.

9.
Mech Ageing Dev ; 199: 111551, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358533

RESUMO

Polyphenols are chemopreventive through the induction of nuclear factor erythroid 2 related factor 2 (Nrf2)-mediated proteins and anti-inflammatory pathways. These pathways, encoding cytoprotective vitagenes, include heat shock proteins, such as heat shock protein 70 (Hsp70) and heme oxygenase-1 (HO-1), as well as glutathione redox system to protect against cancer initiation and progression. Phytochemicals exhibit biphasic dose responses on cancer cells, activating at low dose, signaling pathways resulting in upregulation of vitagenes, as in the case of the Nrf2 pathway upregulated by hydroxytyrosol (HT) or curcumin and NAD/NADH-sirtuin-1 activated by resveratrol. Here, the importance of vitagenes in redox stress response and autophagy mechanisms, as well as the potential use of dietary antioxidants in the prevention and treatment of multiple types of cancer are discussed. We also discuss the possible relationship between SARS-CoV-2, inflammation and cancer, exploiting innovative therapeutic approaches with HT-rich aqueous olive pulp extract (Hidrox®), a natural polyphenolic formulation, as well as the rationale of Vitamin D supplementation. Finally, we describe innovative approaches with organoids technology to study human carcinogenesis in preclinical models from basic cancer research to clinical practice, suggesting patient-derived organoids as an innovative tool to test drug toxicity and drive personalized therapy.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Desenvolvimento de Medicamentos , Fator 2 Relacionado a NF-E2/metabolismo , Organoides/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/farmacologia , Vitamina D/farmacologia , Animais , Antineoplásicos Fitogênicos/farmacologia , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Humanos , Fator 2 Relacionado a NF-E2/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Organoides/metabolismo , Oxirredução , Estresse Oxidativo/genética , Tratamento Farmacológico da COVID-19
10.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360708

RESUMO

BACKGROUND: exposure to environmental contaminants has been linked to an increased risk of neurological diseases and poor outcomes. Chemical name of Atrazine (ATR) is 6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine, and it is the most commonly used broad-spectrum herbicide in agricultural crops. Several studies have demonstrated that ATR has the potential to be harmful to the brain's neuronal circuits. Until today nobody has explored the effect of ATR inhalation on young and aged mice. METHODS: young and aged mice were subject to 25 mg of ATR in a vehicle made with saline and 10% of Dimethyl sulfoxide (DMSO) every day for 28 days. At the end of experiment different behavioral test were made and brain was collected. RESULTS: exposure to ATR induced the same response in terms of behavioral alterations and motor and memory impairment in mice but in aged group was more marked. Additionally, in both young and aged mice ATR inhalations induced oxidative stress with impairment in physiological antioxidant response, lipid peroxidation, nuclear factor kappa-light-chain-enhancer of activated B cells (nf-κb) pathways activation with consequences of pro-inflammatory cytokines release and apoptosis. However, the older group was shown to be more sensitive to ATR inhalation. CONCLUSIONS: our results showed that aged mice were more susceptible compared to young mice to air pollutants exposure, put in place a minor physiologically response was seen when exposed to it.


Assuntos
Envelhecimento/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Atrazina/efeitos adversos , Encéfalo/metabolismo , Administração por Inalação , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Atrazina/farmacologia , Encéfalo/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos
11.
Antioxidants (Basel) ; 10(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199629

RESUMO

Traumatic brain injury (TBI) is a major health and socioeconomic problem affecting the world. This condition results from the application of external physical force to the brain which leads to transient or permanent structural and functional impairments. TBI has been shown to be a risk factor for neurodegeneration which can lead to Parkinson's disease (PD) for example. In this study, we wanted to explore the development of PD-related pathology in the context of an experimental model of TBI and the potential ability of Coriolus versicolor and Hericium erinaceus to prevent neurodegenerative processes. Traumatic brain injury was induced in mice by controlled cortical impact. Behavioral tests were performed at various times: the animals were sacrificed 30 days after the impact and the brain was processed for Western blot and immunohistochemical analyzes. After the head injury, a significant decrease in the expression of tyrosine hydroxylase and the dopamine transporter in the substantia nigra was observed, as well as significant behavioral alterations that were instead restored following daily oral treatment with Hericium erinaceus and Coriolus versicolor. Furthermore, a strong increase in neuroinflammation and oxidative stress emerged in the vehicle groups. Treatment with Hericium erinaceus and Coriolus versicolor was able to prevent both the neuroinflammatory and oxidative processes typical of PD. This study suggests that PD-related molecular events may be triggered on TBI and that nutritional fungi such as Hericium erinaceus and Coriolus versicolor may be important in redox stress response mechanisms and neuroprotection, preventing the progression of neurodegenerative diseases such as PD.

12.
Antioxidants (Basel) ; 10(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209690

RESUMO

Interstitial cystitis/painful bladder syndrome (IC/PBS) is a chronic bladder condition characterized by frequent urination, inflammation, oxidative stress, and pain. The aim of the study was to evaluate the anti-inflammatory and antioxidant effects of an oral administration of Hidrox® (10 mg/kg) in the bladder and spinal cord in a rodent model of IC/BPS. The chronic animal model of cystitis was induced by repeated intraperitoneal injections of cyclophosphamide (CYP) for five consecutive days. Treatment with Hidrox® began on the third day of the CYP injection and continued until the 10th day. CYP administration caused macroscopic and histological bladder changes, inflammatory infiltrates, increased mast cell numbers, oxidative stress, decreased expression of the tight endothelial junction (e.g., zonula occludens-1 (ZO-1) and occludin), and bladder pain. Treatment with Hidrox® was able to improve CYP-induced inflammation and oxidative stress via the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. It was also able to reduce bladder pain which was aggravated by the activation of neuroinflammation in the central nervous system. In particular, Hidrox® reduced the brain-derived neurotrophic factor (BDNF), as well as the activation of astrocytes and microglia, consequently reducing mechanical allodynia. These results indicate that nutritional consumption of Hidrox® can be considered as a new therapeutic approach for human cystitis, increasing the conceivable potential of a significant improvement in the quality of life associated with a lowering of symptom intensity in patients with IC/BPS.

13.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206129

RESUMO

Endometriosis is a common disease. Its pathogenesis still remains uncertain, but it is clear that cell proliferation, apoptosis and chronic inflammation play an important role in its development. This paper aimed to investigate the anti-proliferative and anti-inflammatory effects of a combined therapy with fotemustine and dexamethasone. Endometriosis was induced by intraperitoneal injections of uterine fragments from donor animals to recipient animals. Next, the pathology was allowed to develop for 7 days. On the seventh day, fotemustine was administered once and dexamethasone was administered daily for the next 7 days. On Day 14, the animals were sacrificed, and peritoneal fluids and lesions were explanted. In order to evaluate the gastrointestinal side effects of the drugs, stomachs were harvested as well. The combined therapy of fotemustine and dexamethasone reduced the proinflammatory mediator levels in the peritoneal fluid and reduced the lesions' area and diameter. In particular, fotemustine and dexamethasone administration reduced the heterogeneous development of endometrial stroma and glands (histological analysis of lesions) and hyperproliferation of endometriotic cells (immunohistochemical analysis of Ki67 and Western blot analysis of PCNA) through the mitogen-activated protein kinase (MAPK) signaling pathway. Combined fotemustine and dexamethasone therapy showed anti-inflammatory effects by inducing the synthesis of anti-inflammatory mediators at the transcriptional and post-transcriptional levels (Western blot analysis of NFκB, COX-2 and PGE2 expression). Fotemustine and dexamethasone administration had anti-apoptotic activity, restoring the impaired mechanism (TUNEL assay and Western blot analysis of Bax and Bcl-2). Moreover, no gastric disfunction was detected (histological analysis of stomachs). Thus, our data showed that the combined therapy of fotemustine and dexamethasone reduced endometriosis-induced inflammation, hyperproliferation and apoptosis resistance.


Assuntos
Dexametasona/farmacologia , Endometriose/tratamento farmacológico , Inflamação/tratamento farmacológico , Compostos de Nitrosoureia/farmacologia , Compostos Organofosforados/farmacologia , Animais , Apoptose/efeitos dos fármacos , Líquido Ascítico/metabolismo , Proliferação de Células/efeitos dos fármacos , Endometriose/complicações , Endometriose/genética , Endometriose/patologia , Endométrio/efeitos dos fármacos , Endométrio/patologia , Feminino , Humanos , Inflamação/complicações , Inflamação/genética , Inflamação/patologia , NF-kappa B/genética , Antígeno Nuclear de Célula em Proliferação/genética , Ratos , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/genética
14.
Curr Issues Mol Biol ; 43(2): 704-715, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34287264

RESUMO

Patients with cardiovascular disease (CVD) and periodontitis (PT) show shared risk factors as result of the altered molecular mechanisms associated with pathological conditions. The aim of our study was to evaluate if the plasma biomarkers associated with endothelial dysfunction may also be related to alterations in the inflammatory status in peripheral blood mononuclear cells (PBMC). Patients with PT, coronary heart disease (CHD), or both diseases as well as controls were enrolled. Plasma levels of coenzyme Q10 (CoQ10), 3-nitrotyrosine (NT), and asymmetric dimethylarginine (ADMA) were assessed using HPLC. mRNA levels of caspase-1 (CASP1), NLR family pyrin domain containing 3 (NLRP3), and tumor necrosis factor-α (TNF-α) in PBMC from the recruited subjects were quantified using real-time PCR. Patients with PT + CHD showed lower CoQ10 plasma levels and increased concentrations of NT in comparison to healthy subjects. ADMA levels were higher in CHD and PT + CHD patients compared to controls. Transcript levels of CASP1, NLRP3, and TNF-α were up-regulated in PBMC from all patient groups when compared to healthy subjects. Our results suggest a possible causal link between oxidative stress, high levels of NT and ADMA, and inflammasome activation, which may be involved in the endothelial inflammatory dysfunction leading to the pathogenesis and progression of CHD in PT patients.


Assuntos
Biomarcadores , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Endotélio/metabolismo , Estresse Nitrosativo , Estresse Oxidativo , Periodontite/metabolismo , Estudos de Casos e Controles , Suscetibilidade a Doenças , Endotélio/fisiopatologia , Fatores de Risco de Doenças Cardíacas , Humanos , Leucócitos Mononucleares/metabolismo , Periodontite/sangue , Periodontite/complicações , Periodontite/etiologia , Curva ROC , Medição de Risco , Fatores de Risco
15.
Antioxidants (Basel) ; 10(5)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064310

RESUMO

Endometriosis is a gynecological and painful condition affecting women of reproductive age. It is characterized by dysfunctional endometrium-like implants outside of the uterine cavity. The purpose of this study was to evaluate the effects of Hidrox®, an aqueous extract of olive pulp containing hydroxytyrosol, on endometriotic lesions associated with pro-oxidative alterations and pain-like behaviors. Endometriosis was induced by intraperitoneal injection of uterine fragments, and Hidrox® was administered daily. At the end of the 14-day treatment, behavioral alterations were assessed and hippocampal tissues were collected. Laparotomy was performed, and the endometrial implants were harvested for histological and biochemical analysis. Hidrox® treatment reduced endometriotic implant area, diameter and volumes. Vehicle-treated rats showed lesional fibrosis, epithelial-mesenchymal transition and fibroblast-myofibroblast transdifferentiation, angiogenesis and pro-oxidative alterations in the peritoneal cavity. Hidrox® treatment reduced the aniline blue-stained area, α-smooth muscle actin (α-sma) and CD34 positive expressions. Moreover, it reduced mast cell recruitment into the lesions, myeloperoxidase activity and lipid peroxidation and increased superoxide dismutase (SOD) activity and glutathione levels in the endometrial explants. In the peritoneal fluid, Hidrox® treatment reduced interleukin (IL)-1ß, IL2, IL6, tumor necrosis factor-α (TNF-α) and vascular endothelial grow factor (VEGF) levels increased by the disease. Hidrox® administration also reduced peripheral and visceral sensibility as shown by the behavioral tests (open field test, hot plate test, elevated plus maze test and acetic-acid-induced abdominal contractions). Animals treated with Hidrox® also showed reduced blood-brain barrier permeability and mast cell infiltration in the hippocampus, as well as astrocyte and microglia activation and brain oxidative status restoring brain-derived neurotrophic factor (BDNF) protein expression and increasing Nuclear factor erythroid 2-related factor 2 (Nfr2) nuclear translocation. In conclusion, Hidrox® displayed potential ameliorative effects on endometriotic implants and related pain-induced behaviors due to its potent antioxidative properties.

16.
Antioxidants (Basel) ; 10(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065584

RESUMO

Traumatic brain injuries (TBI) are a serious public-health problem. Furthermore, subsequent TBI events can compromise TBI patients' quality of life. TBI is linked to a number of long- and short-term complications such as cerebral atrophy and risk of developing dementia and Alzheimer's Disease (AD). Following direct TBI damage, oxidative stress and the inflammatory response lead to tissue injury-associated neurodegenerative processes that are characteristic of TBI-induced secondary damage. Hidrox® showed positive effects in preclinical models of toxic oxidative stress and neuroinflammation; thus, the aim of this study was to evaluate the effect of Hidrox® administration on TBI-induced secondary injury and on the propagation of the AD-like neuropathology. Hidrox® treatment reduced histological damage after controlled cortical impact. Form a molecular point of view, hydroxytyrosol is able to preserve the cellular redox balance and protein homeostasis by activating the Nrf2 pathway and increasing the expression of phase II detoxifying enzymes such as HO-1, SOD, Catalase, and GSH, thus counteracting the neurodegenerative damage. Additionally, Hidrox® showed anti-inflammatory effects by reducing the activation of the NFkB pathway and related cytokines overexpression. From a behavioral point of view, Hidrox® treatment ameliorated the cognitive dysfunction and memory impairment induced by TBI. Additionally, Hidrox® was associated with a significant increased number of hippocampal neurons in the CA3 region, which were reduced post-TBI. In particular, Hidrox® decreased AD-like phenotypic markers such as ß-amyloid accumulation and APP and p-Tau overexpression. These findings indicate that Hidrox® could be a valuable treatment for TBI-induced secondary injury and AD-like pathological features.

17.
Biomedicines ; 8(6)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604897

RESUMO

Carnosine improves diabetic complications, including diabetic nephropathy, in in vivo models. To further understand the underlying mechanism of nephroprotection, we studied the effect of carnosine under glucose-induced stress on cellular stress response proteins in murine immortalized podocytes, essential for glomerular function. High-glucose stress initiated stress response by increasing intracellular heat shock protein 70 (Hsp70), sirtuin-1 (Sirt-1), thioredoxin (Trx), glutamate-cysteine ligase (gamma-glutamyl cysteine synthetase; γ-GCS) and heme oxygenase-1 (HO-1) in podocytes by 30-50% compared to untreated cells. Carnosine (1 mM) also induced a corresponding upregulation of these intracellular stress markers, which was even more prominent compared to glucose for Hsp70 (21%), γ-GCS and HO-1 (13% and 20%, respectively; all p < 0.001). Co-incubation of carnosine (1 mM) and glucose (25 mM) induced further upregulation of Hsp70 (84%), Sirt-1 (52%), Trx (35%), γ-GCS (90%) and HO-1 (73%) concentrations compared to untreated cells (all p < 0.001). The glucose-induced increase in 4-hydroxy-trans-2-nonenal (HNE) and protein carbonylation was reduced dose-dependently by carnosine by more than 50% (p < 0.001). Although podocytes tolerated high carnosine concentrations (10 mM), high carnosine levels only slightly increased Trx and γ-GCS (10% and 19%, respectively, compared to controls; p < 0.001), but not Hsp70, Sirt-1 and HO-1 proteins (p not significant), and did not modify the glucose-induced oxidative stress response. In podocytes, carnosine induced cellular stress tolerance and resilience pathways and was highly effective in reducing high-glucose-induced glycative and lipoperoxidative stress. Carnosine in moderate concentrations exerted a direct podocyte molecular protective action.

18.
Int J Mol Sci ; 21(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486023

RESUMO

Parkinson's disease (PD) is the second most prevalent late-age onset neurodegenerative disorder, affecting 1% of the population after the age of about 60 years old and 4% of those over 80 years old, causing motor impairments and cognitive dysfunction. Increasing evidence indicates that Mediterranean diet (MD) exerts beneficial effects in maintaining health, especially during ageing and by the prevention of neurodegenerative disorders. In this regard, olive oil and its biophenolic constituents like hydroxytyrosol (HT) have received growing attention in the past years. Thus, in the current study we test the health-promoting effects of two hydroxytyrosol preparations, pure HT and Hidrox® (HD), which is hydroxytyrosol in its "natural" environment, in the established invertebrate model organism Caenorhabditis elegans. HD exposure led to much stronger beneficial locomotion effects in wild type worms compared to HT in the same concentration. Consistent to this finding, in OW13 worms, a PD-model characterized by α-synuclein expression in muscles, HD exhibited a significant higher effect on α-synuclein accumulation and swim performance than HT, an effect partly confirmed also in swim assays with the UA44 strain, which features α-synuclein expression in DA-neurons. Interestingly, beneficial effects of HD and HT treatment with similar strength were detected in the lifespan and autofluorescence of wild-type nematodes, in the neuronal health of UA44 worms as well as in the locomotion of rotenone-induced PD-model. Thus, the hypothesis that HD features higher healthspan-promoting abilities than HT was at least partly confirmed. Our study demonstrates that HD polyphenolic extract treatment has the potential to partly prevent or even treat ageing-related neurodegenerative diseases and ageing itself. Future investigations including mammalian models and human clinical trials are needed to uncover the full potential of these olive compounds.


Assuntos
Caenorhabditis elegans/fisiologia , Olea/química , Doença de Parkinson/dietoterapia , Doença de Parkinson/fisiopatologia , Polifenóis/farmacologia , Envelhecimento , Animais , Animais Geneticamente Modificados , Biomarcadores/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Dieta Mediterrânea , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Humanos , Longevidade , Microscopia de Fluorescência , Azeite de Oliva/química , Rotenona/toxicidade , alfa-Sinucleína/metabolismo
19.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244920

RESUMO

Hericium Erinaceus (HE) is a medicinal plant known to possess anticarcinogenic, antibiotic, and antioxidant activities. It has been shown to have a protective effect against ischemia-injury-induced neuronal cell death in rats. As an extending study, here we examined in pheochromocytoma 12 (PC12) cells, whether HE could exert a protective effect against oxidative stress and apoptosis induced by di(2-ethylhexyl)phthalate (DEHP), a plasticizer known to cause neurotoxicity. We demonstrated that pretreatment with HE significantly attenuated DEHP induced cell death. This protective effect may be attributed to its ability to reduce intracellular reactive oxygen species levels, preserving the activity of respiratory complexes and stabilizing the mitochondrial membrane potential. Additionally, HE pretreatment significantly modulated Nrf2 and Nrf2-dependent vitagenes expression, preventing the increase of pro-apoptotic and the decrease of anti-apoptotic markers. Collectively, our data provide evidence of new preventive nutritional strategy using HE against DEHP-induced apoptosis in PC12 cells.


Assuntos
Apoptose , Dietilexilftalato/toxicidade , Hericium/química , Mitocôndrias/patologia , Extratos Vegetais/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Heme Oxigenase-1/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Tiorredoxinas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
20.
Nutrients ; 11(10)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658697

RESUMO

Curcumin is a polyphenol compound extracted from the rhizome of Curcuma longa Linn (family Zingiberaceae) commonly used as a spice to color and flavor food. Several preclinical studies have suggested beneficial roles for curcumin as an adjuvant therapy in free radical-based diseases, mainly neurodegenerative disorders. Indeed, curcumin belongs to the family of hormetins and the enhancement of the cell stress response, mainly the heme oxygenase-1 system, is actually considered the common denominator for this dual response. However, evidence-based medicine has clearly demonstrated the lack of any therapeutic effect of curcumin to contrast the onset or progression of neurodegeneration and related diseases. Finally, the curcumin safety profile imposes a careful analysis of the risk/benefit balance prior to proposing chronic supplementation with curcumin.


Assuntos
Curcumina , Hormese , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Antioxidantes , Humanos , Camundongos , Sistema Nervoso/efeitos dos fármacos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...